

Techno College of Engineering Agartala

Department of Mechanical Engineering

Robotics Lab

An Initiative for the Hands on Knowledge against the Theory Subjects like Mechatronics System (PEME 608/2) and Robotics (PEME 801/2)

List of the experiments:

1. Introduction to different components of a Robot, Mechanical Joints, and transformation of different frames

- i. Components of a Robot
- ii. Mechanical Joints
 - a. Linear joints (Sliding & Prismatic)
 - b. Rotary (Twisting & Revolute)
 - c. Hooke's joint
 - d. Spherical joints
- iii. Frame transformation
 - a. Frame translation
 - b. Frame rotation
 - c. Combination

2. Introduction of various motions of the manipulator and motion matrix.

- i. Motion matrix for translation (about X, Y & Z)
- ii. Motion matrix for Rotation (X, Y & Z)
- iii. Compound matrix

3. Introduction of various DH-parameters to formulize the robotic motion.

- i. DH parameters & their utility
- ii. Link parameters (Size of the link, angle of twist)
- iii. Joint Parameters (Link off-set, joint angle)
- iv. DH-parameter table
- v. Compound DH-parameter matrix

Techno College of Engineering Agartala

Department of Mechanical Engineering

4. Study of the forward & inverse kinematics of a pick-and-place arm of 3 DoF.

- i. About the arm, components used, and joints
- ii. DH-parameter table
- iii. Calculation of final transformation matrix for forward kinematics
- iv. Calculation for final transformation matrix for inverse kinematics
- v. Observation & Conclusions

5. Study of the forward & inverse kinematics of a pick-and-place arm of 6 DoF.

- i. About the arm, components used, and joints
- ii. DH-parameter table
- iii. Calculation of final transformation matrix for forward kinematics
- iv. Calculation for final transformation matrix for inverse kinematics
- v. Observation & Conclusions

6. Study of the forward & inverse kinematics of a Robot assisted spot welding setup.

- i. About the arm, components used, and joints
- ii. DH-parameter table
- iii. Calculation of final transformation matrix for forward kinematics
- iv. Calculation for final transformation matrix for inverse kinematics
- v. Observation & Conclusions

7. Study of different sensors and actuators used in robotics.

- i. Classifications of the sensors
- ii. Internal and external sensors
- iii. Tactile and non-tactile sensors
- iv. Servo-motor, Stepper motor, DC motor

8. Introduction to PD and PID control Schemes.

- i. About the PD and PID control scheme
- ii. Block diagram
- iii. Components of control scheme
- iv. Formula used for the torque control
- v. PD and PID controller

9. Study of the PID control scheme to control a DC/Stepper motor.

- i. About the scheme, integral formula
- ii. Working of DC/ stepper motor

Techno College of Engineering Agartala

Department of Mechanical Engineering

- iii. Useful controller
- iv. Control scheme diagram
- v. Observation & Calculations

10. Study of the Robot-assisted MIG-welding set-up.

- i. About the arm, components used, and joints
- ii. DH-parameter table
- iii. Calculation of final transformation matrix for forward kinematics
- iv. Calculation for final transformation matrix for inverse kinematics
- v. Analysis of the nature of the welding produced
- v. Observation & Conclusions

11. Study of different programming interfaces, commands, programming approaches and introduction to ROS.

- i. About the online and offline programming
- ii. Teach pendant programming approach
- iii. Versatile assembly language (VAL)
- iv. Introduction to Robot operating systems (ROS)
- v. Block diagram
- vi. Different commands used in Robotics

12. Robotics with Python and embedded C.

Coding practice sessions on different robotic related problems